

**International
Standard**

ISO/IEC 30134-2

**Information technology —
Data centres key performance
indicators —**

**Part 2:
Power usage effectiveness (PUE)**

**Second edition
2026-01**

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2026

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

Page

Foreword	v
Introduction	vi
1 Scope	1
2 Normative references	1
3 Terms, definitions, abbreviated terms and symbols	1
3.1 Terms and definitions	2
3.2 Abbreviated terms	3
3.3 Symbols	3
4 Applicable areas of the data centre	4
5 Determination of power usage effectiveness (PUE)	5
5.1 General	5
5.2 Total data centre energy consumption	6
5.3 Total data centre energy consumption in mixed-use buildings	7
6 Measurement of power usage effectiveness	8
6.1 Calculation and measurement of energy consumption	8
6.1.1 General	8
6.1.2 On-site electricity generation	8
6.1.3 Measurement period and frequency	8
6.1.4 Meter and measurement requirements	8
6.1.5 E_{DC} measurement location	8
6.2 Categories of power usage effectiveness	8
6.2.1 General	8
6.2.2 Category 1 (PUE ₁) — Basic resolution	9
6.2.3 Category 2 (PUE ₂) — Intermediate resolution	9
6.2.4 Category 3 (PUE ₃) — Advanced resolution	9
7 Application of PUE	10
8 Reporting of power usage effectiveness	10
8.1 Requirements	10
8.1.1 Standard construct for communicating PUE data	10
8.1.2 Example of reporting PUE values	10
8.1.3 Data for public reporting of PUE	10
8.2 Recommendations	11
8.2.1 Use of PUE category	11
8.2.2 Trend tracking data	11
9 PUE derivatives	12
9.1 General	12
9.1.1 Purpose of PUE derivatives	12
9.1.2 Using PUE derivatives	12
9.2 Interim PUE (iPUE)	12
9.3 Partial PUE (pPUE)	12
9.3.1 General	12
9.3.2 Zoning	13
9.3.3 Metering requirements for pPUE	14
9.3.4 Reporting of pPUE	14
9.3.5 Use of pPUE in energy management	15
9.4 Mixed use PUE (mPUE)	16
9.5 Designed PUE (dPUE)	16
Annex A (normative) Energy measurements	18
Annex B (informative) Calculation of PUE using various energy supplies	20
Annex C (normative) Interpretation of PUE and its derivatives	27

ISO/IEC 30134-2:2026(en)

Annex D (informative) Calculating dPUE.....	29
Annex E (informative) mPUE measurement and calculation method for mixed building.....	32
Bibliography.....	35

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or www.iec.ch/members_experts/refdocs).

ISO and IEC draw attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO and IEC take no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO and IEC had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents and <https://patents.iec.ch>. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

The document was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 39, *Sustainability, IT and data centres*.

This second edition cancels and replaces the first edition (ISO/IEC 30134-2:2016), which has been technically revised.

The main changes are as follows:

- required measurements at the data centre boundary have been updated;
- on-site electricity generation has been changed to be measured in kWh;
- 12 months recording and documentation of E_{DC} and E_{IT} has changed;
- use of watt meters to measure E_{DC} and E_{IT} has changed;
- requirement for electrical energy required to export other non-electric energy sources outside the data centre boundary has been added;
- new requirement has been added for situations when E_{DC} or E_{IT} cannot be accounted for, or measured, as specified;
- mixed use PUE (mPUE) derivative has been added for mixed use buildings;
- additional provisioning examples of calculating designed PUE (dPUE) have been added.

A list of all parts in the ISO/IEC 30134 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of those bodies can be found at www.iso.org/members.html and www.iec.ch/national-committees.

Introduction

The global economy is now reliant on information and communication technologies and the associated generation, transmission, dissemination, computation and storage of digital data. All markets have experienced exponential growth in digital data, for social, educational and business sectors. While the internet backbone carries the traffic, there are a wide variety of data centres at nodes and hubs within both private enterprise and shared/collocation facilities.

With many governments having “digital agendas” to provide both citizens and businesses with ever-faster broadband access, the increase in network speed and capacity will, by itself, generate ever more usage (Jevons Paradox). Data generation and the consequential increase in data manipulation and storage are directly linked to increasing power consumption.

With this background, it is clear that data centre growth, and power consumption in particular, is an inevitable consequence and that growth will demand increasing power consumption despite the most stringent energy efficiency strategies. This makes the need for key performance indicators (KPIs) that cover the effective use of resources (including but not limited to energy) and the reduction of CO₂ emissions essential.

Within the ISO/IEC 30134 series, the term “resource usage effectiveness” is more generally used for KPIs in preference to “resource usage efficiency”, which is restricted to situations where the input and output parameters used to define the KPI have the same units.

In order to determine the overall resource effectiveness or efficiency of a data centre, a holistic suite of metrics is required. This document specifies power usage effectiveness (PUE), which has become a popular metric to determine the efficient utilization and distribution of energy resources within a data centre.

NOTE 1 The term “efficiency” is employed for PUE but “effectiveness” provides continuity with earlier market recognition of the term.

This document belongs to a series of standards for such KPIs and has been produced in accordance with ISO/IEC 30134-1, which defines common requirements for a holistic suite of KPIs for data centre resource usage effectiveness or efficiency.

The ISO/IEC 30134 series does not specify limits or targets for any KPI and does not describe or imply, unless specifically stated, any form of aggregation of individual KPIs into a combined nor an overall KPI for data centre resource usage effectiveness or efficiency.

NOTE 2 The PUE KPI was originally developed by The Green Grid.

Information technology — Data centres key performance indicators —

Part 2: Power usage effectiveness (PUE)

1 Scope

This document specifies power usage effectiveness (PUE) as a key performance indicator (KPI) to quantify the efficient use of energy.

This document:

- a) defines the PUE of a data centre;
- b) introduces PUE measurement categories;
- c) describes the relationship of this KPI to a data centre's infrastructure, information technology equipment and information technology operations;
- d) defines the measurement, the calculation and the reporting of the parameter;
- e) provides information on the correct interpretation of the PUE.

PUE derivatives are described in [Clause 9](#).

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 30134-1, *Information technology — Data centres — Key performance indicators — Part 1: Overview and general requirements*

IEC 62052 (all parts), *Electricity metering equipment (AC) — General requirements, tests and test conditions*

IEC 62053 (all parts), *Electricity metering equipment (a.c.) — Particular requirements*

ISO 8601-1, *Date and time — Representations for information interchange — Part 1: Basic rules*

Bibliography

- [1] WP#49 - *PUE, a Comprehensive Examination of the Metric* — The Green Grid, <https://www.thegreengrid.org/en/resources/library-and-tools/237-WP%2349--PUE%3A-A-Comprehensive-Examination-of-the-Metric>
- [2] ISO/IEC 30134-6, *Information technology — Data centres key performance indicators — Part 6: Energy Reuse Factor (ERF)*
- [3] ISO/IEC/TR 23050, *Information technology — Data centres — Impact on data centre resource metrics of electrical energy storage and export*
- [4] EN 1434 (series), *Thermal energy meters*
- [5] ASTM E3137/E3137M-18, *Standard Specification for Heat Meter Instrumentation*
- [6] ISO/IEC 30134-7, *Information technology — Data centres key performance indicators — Part 7: Cooling efficiency ratio (CER)*
- [7] ISO/IEC 22237-3, *Information technology — Data centre facilities and infrastructures — Part 3: Power distribution*
- [8] ISO/IEC 22237-1, *Information technology — Data centre facilities and infrastructures — Part 1: General concepts*
- [9] ISO/IEC/TS 8236-1, *Information technology – Provisioning, forecasting & management – Part 1: Data centre IT equipment*
- [10] ISO/IEC/TS 8236-2, *Information technology – Provisioning, forecasting & management -Part 2: Data centre facility*